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These exercises introduce key Bioconductor packages and data structures
for working with sequence data. For the first time only, install the package with

> pkg <- "http://10.0.1.2/ExploringSequences_0.1.0.tar.gz"

> install.packages(pkg, repos=NULL, type="source")

Use the file selection dialog box that appears to select the file ExploringSe-

quences_0.1.0.tar.gz. We start by loading a package designed for the course.

> library(ExploringSequences)

The package contains data sets, helper functions, and the course material. In
particular, the slides and labs are available by starting R and entering

> browseVignettes(package="ExploringSequences")

This launches a web browser; the links labeled R contain scripts that can be run
as a short-cut to completing exercises. Evaluate the following to set up paths
that point to the data we will use:

> fastqFile <- system.file("data", "fq.Rda", package="ExploringSequences")

> bamFiles <- system.file("extdata", "bam", package="ExploringSequences")

> barFile <- system.file("data", "bar.Rda", package="ExploringSequences")

Do a ‘sanity check’ to ensure the path is set correctly

> stopifnot(file.exists(fastqFile))

> stopifnot(file.exists(bamFiles))

> stopifnot(file.exists(barFile))

1 RNA-seq

For these exercises we use a subset of the data from [1]. The experiment involved
RNAi combined with mRNA-seq in D. melanogaster. The data itself is available
in GEO as part of experiment GSE18508. We look at a subset of samples,
summarized in Table 1. There are three biological replicates of untreated and
RNAi. The data were collected over a period when there were very rapid changes
in technology; the samples with multiple runs are single-end reads, with fewer
reads per run and hence several runs per sample. Later samples were paired-end
runs with more reads per sample.
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Table 1: GEO records from GSE18508
Id Sample Run
708 S2 DRSC Untreated-1 SRR0317086
709 SRR0317096
710 SRR0317106
711 SRR0317116
712 SRR0317126
713 SRR0317136
714 S2 DRSC Untreated-3 SRR0317147
715 SRR0317157
716 S2 DRSC Untreated-4 SRR0317168
717 SRR0317178
718 S2 DRSC CG8144 RNAi-1 SRR0317189
719 SRR0317199
720 SRR0317209
721 SRR0317219
722 SRR0317229
723 SRR0317239
724 S2 DRSC CG8144 RNAi-3 SRR0317240
725 SRR0317250
726 S2 DRSC CG8144 RNAi-4 SRR0317261
727 SRR0317271

1.1 Reads
Exercise 1
This exercise reads in one fastq file. The file contains sequence and quality
information from 1 million reads of a paired end run; the file name ending with
‘_1.fastq’ is from the first mate pair. The reads have been sampled randomly
from a larger file.

a. Use load(fastqFile) to read the file in to your R session. Explore the
object you have created.

Solution: Read in the data with

> load(fastqFile)

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

Normally, fastq files are input using the command readFastq. The result is
a ShortReadQ object. Discover the class of an object with class. Find out
information about the class with, e.g., ?ShortReadQ.

> class(fq) # class ShortReadQ

[1] "ShortReadQ"

attr(,"package")

[1] "ShortRead"
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> sread(fq) # short reads

A DNAStringSet instance of length 1000000

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

[4] 37 CGCAAACGCCACGAGTCCACTCTGGGTATTTATGTGA

[5] 37 GGAAAAAGTCCTGCTCGAGCATTTCAGGAATGGTGCA

[6] 37 GCTTGCGGAAGTTCTTTACGCGCGCCTGCTCCTGGGG

[7] 37 GTGGTGGCGCCTAGTTCCGTCCGCCCTTCTCGTCGCA

[8] 37 GTTCACAGTGCTAGAAATGCGTGGGGTTATATAGAAA

[9] 37 GTTCATATCGATAAAAAAGATTGCGACCTCGATGTTG

... ... ...

[999992] 37 GGCCAAACTAAAGGTGTTTTATTCAGACGATAAACAG

[999993] 37 GGCGAGGGCAACAGATTGTTGGTCCATTTCTTGGTGT

[999994] 37 GCGACGTCTGCTTCGCGGACACTTACAAGGATGGTTC

[999995] 37 GTCGTCGATGTTTATCCCGTTTGAGAGAGCCATCTTC

[999996] 37 CTCCAGGGCAGTCACGTTGAGGATACCGTTTTTATCT

[999997] 37 CCTCGTTGATGTACATCATATACTTTGTTTTGGCCGC

[999998] 37 GAGTTCGTAGCGGACCGTTTGCTCGTGGAGTTGGGGT

[999999] 37 GTCTGGTCTACCAGGGCGTTAAGGTGATGCCCTATTC

[1000000] 37 GAAGTCGGTACCCTCGAACAGAGAGTCGATCTCAATG

> quality(fq) # quality scores

class: FastqQuality

quality:

A BStringSet instance of length 1000000

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+
[4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

[5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

[6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

[7] 37 IIIIIIIIIIIIIIIIIII:IIIIIIIIIIII?III)

[8] 37 IIIIIIIIIIIIIIIIIIIII+II$IIIIIIIIIIII

[9] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII?II?II

... ... ...

[999992] 37 IIIIIIIIIIIIII+IIIIIIIIHIIABI%III6CIH

[999993] 37 .IIIIIIIIIIIIIIIIIIIIIIIII?2&%&3/$*6$

[999994] 37 +IIIIIIIIBIIIIII=III8IIGAC5;D*-9I2&2<

[999995] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICIIIII

[999996] 37 IIIIIIIIIIIIIIII6IIIIII.IH=$.1#'"#%%$
[999997] 37 IIIIIIIIIIIIIIIIII*IIIIIIIIIIIIIIIII$

[999998] 37 IIIIIIIIIIIIIIIIIIIIIIIIIAIIIIDII/&6'
[999999] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[1000000] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

What do the letters in the quality score represent?
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Exercise 2
The goal of the next several exercises is to summarize mono- and dinucleotide
use in our reads. To start:

a. Extract the reads from an instance of the ShortReadQ class, using sread.

b. Calculate the frequency of the letters used in each read, using alphabet-

Frequency. Consult the help page for this function, ?alphabetFrequency,
and use the baseOnly and collapse=TRUE arguments to ignore IUPAC am-
biguity letters (there are none in our reads) and to report the nucleotide
counts over all reads (rather than for each read separately).

Solution:

> mono <- alphabetFrequency(sread(fq), baseOnly=TRUE, collapse=TRUE)

> mono

A C G T other

8364351 10002656 10189120 8406472 37401

Exercise 3
Determine the frequency of di-nucleotides. Do this using the dinucleotideFre-

quency function. The operation is a little trickier, because dinucleotideFre-

quency does not have an option to collapse counts over all reads. Instead. . .

a. Use dinucleotideFrequency to create a matrix, with each column repre-
senting a different combination of nucleotides and each row a different
read.

b. Use colSums to sum up each column.

Solution: The following takes a ShortReadQ instance and returns dinu-
cleotide counts:

> di <- colSums(dinucleotideFrequency(sread(fq)))

Exercise 4
The following exercises asks about the distribution of ’GC’ nucleotide content
between reads.

a. Use alphabetFrequency to determine nucleotide use, but omit the collapse

function argument so that the result is a matrix summarizing use in each
read.

b. Subsets the nucleotide use matrix to select the ’G’ and ’C’ columns, and
uses rowSums to sum the GC content for each read (row of the matrix).

c. Uses tabulate to count how many times reads with 0, 1, . . . 37 ’GC’ occurs.
A trick here is that tabulate ignores zeros; by adding 1 to each count,
we get a vector where the first element is the number of reads with 0
’GC’ nucleotides, the second element is the number of reads with 1 ’GC’
nucleotide, and so on.
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There are several steps involves, so formulate your solution as a function.

Solution: A function determining the distribution of GC content is:

> gcContent <- function(x)

+ {

+ abc <- alphabetFrequency(sread(x), baseOnly=TRUE)

+ gcPerRead <- rowSums(abc[,c("G", "C")])

+ wd <- unique(width(sread(x)))

+ tabulate(1 + gcPerRead, 1 + wd)

+ }

Applied to our data, we have

> gc <- gcContent(fq)

> gc

[1] 91 29 31 88 155 412 913 1670 3070 5513

[11] 7137 10359 14422 19507 25642 33830 44586 58652 74725 90623

[21] 103081 109063 105138 92233 73137 52001 33855 19888 10288 5189

[31] 2416 1196 593 268 137 38 17 7

Exercise 5
Visualization is an important tool for gaining insight. R has flexible built-
in graphics commands, but additional packages provide expressive (lattice) and
pretty (ggplot2) alternatives. This lab uses lattice. Most lattice functions expect
a data frame in ‘long’ format, where one or more columns contain the data to
be plotted. Additional columns are indicator variables indicating which group
the correspond rows belongs to.

Start by making a vector bins to indicate GC content (0, 1, . . . ). Use this
in creating a ‘long’ data frame with. . .

a. A column Count containing the counts calculated previously.

b. A column GC containing our ’GC’ content from bins, scaled to represent a
proportion

A powerful and expressive feature of lattice is the use of a formula to describe
the relationship between plotted variables, in this case Count as a function of
GC content. The type argument controls what gets plotted – a background grid
and both lines and points. pch controls the type of point (try example(points)).
file is used in this vignette; it is not part of lattice.

Solution: The following creates a data frame. . .

> bins <- seq_along(gc) - 1

> df <- data.frame(Count=unlist(gc, use.names=FALSE),

+ GC=bins / bins[length(bins)])

. . . and plots the result, Figure 1

> xyplot(Count~GC, df, type=c("g", "b"), pch=20, file="gc")

5

http://cran.fhcrc.org/web/packages/ggplot2/index.html


GC

C
ou

nt

0

20000

40000

60000

80000

100000

0.0 0.2 0.4 0.6 0.8 1.0

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●

Figure 1: Read GC content.

Exercise 6
A simple null expectation is that dinucleotide frequencies are the product of the
mononucleotide frequencies.

a. Calculate the frequency of mononucleotides (ignoring ‘N’ for simplicity),
and use the outer product to determine the expected dinucleotide fre-
quency.

b. Express the expected dinucleotide frequency in the sample as counts by
multiplying by the sample total dinucleotide count.

c. Use chisq.test to calculate a χ2 test.

Create a graphical display, and comment on the results.

Solution:

> ## outer product of mononucleotides frequencies

> f <- mono[-5] / sum(mono[-5])

> exp0 <- as.vector(outer(f, f))

> ## expected values, as counts

> n <- sum(di)

> exp <- exp0 * n

> mode(exp) <- "integer"

> head(exp, 3)

[1] 1840839 2201400 2242437

> ## Chi-squared test

> chisq.test(cbind(di, exp))
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Figure 2: Deviation of observed from expected dinucleotide counts.

Pearson's Chi-squared test

data: cbind(di, exp)

X-squared = 327580.7, df = 15, p-value < 2.2e-16

To display the data using lattice, create a data frame:

a. Coerce columns Observed and Expected, containing the corresponding vec-
tors.

b. Use the names of di to create a column Label.

The panel argument describes how each panel will be created – drawing a hori-
zontal line of color gray (panel.abline) followed by placement of text at particu-
lar coordinates (panel.text; the ‘usual’ xy plot panel function is panel.xyplot).
Note the use of ... to forward arguments not directly used by our custom panel
function.

> ## display

> df <- data.frame(Observed=as.vector(di), Expected=as.vector(exp),

+ Label=names(di), stringsAsFactors=FALSE)

> xyplot(Observed - Expected ~ Expected, df, aspect="iso",

+ panel=function(...) {

+ panel.abline(h=0, col="gray")

+ panel.text(..., labels=df$Label)

+ }, file="dinuc")

The result is in Figure 2, with the following interesting points:
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a. The χ2 test indicates departure from the null.

b. There is a strong bias against TA dinucleotides; knowledge of TA use in the
reference genome would help us to understand whether this is a biological
result or a technical artifact.

c. Similarly, G, C nucleotide pairs are most common.

d. The χ2 test is not really satisfactory, because each nucleotide in a read is
counted twice (as the first and then second nucleotide in the pair). Any
suggestions for improving the analysis?

Exercise 7
Nucleotide counts in each cycle of a read provide important insight into sample
preparation and technological artifacts.

a. Write a short function that extracts reads from a ShortReadQ object and
uses alphabetByCycle to summarize nucleotide use by cycle. Subset the
value returned by alphabetByCycle to include only the nucleotides A, C,
G, T.

b. Apply this function to fq, and explore the result.

c. Display the result using lattice. To do this, cast the results into a long
data frame, and then use xyplot. It is easiest to start with a simple plot,
and to subsequently adjust display and formatting.

Solution: Here we calculate and plot DNA alphabet use as a function of
cycle.

> nuc <- c("A", "C", "G", "T", "N")

> abc <- alphabetByCycle(sread(fq))[nuc,]

> abc[,1:5]

cycle

alphabet [,1] [,2] [,3] [,4] [,5]

A 78194 153156 200468 230120 283083

C 439302 265338 362839 251434 203787

G 397671 270342 258739 356003 301640

T 84833 311164 177954 162443 211490

N 0 0 0 0 0

The following creates a data frame and displays the result using lattice.

> ## create a 'long' data frame

> ncycle <- ncol(abc)

> cycle <- rep(seq_len(ncycle), each=nrow(abc))

> df <- data.frame(Count=as.vector(abc),

+ Nucleotide=factor(nuc, levels=nuc),

+ Cycle=cycle)

> ## plot Count as a function of cycle, with Nucleotide used to group lines

> ## within a panel.
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Figure 3: Alphabet-by-cycle.

> xyplot(Count ~ Cycle, group=Nucleotide, df, type="l",

+ key=simpleKey(lines=TRUE, points=FALSE, columns=5, text=nuc),

+ file="abc-read")

Interesting points (some well-known) from Figure 3 include:

a. Primers introduce initial bias, through cycle ≈ 12.

b. Under a null of uniform coverage, lines should be horizontal; but the plots
suggest that A, T decrease in frequency as cycles progress. This is much
more pronounced in early (GAI) Solexa / Illumina runs.

c. There is a weak but consistent periodic bias – e.g., every second cycle has
relatively more A, T.

Exercise 8
Base quality decreases as cycle number increases. Calculate the average quality
per cycle, and display the result. To calculate quality per cycle. . .

a. Extract the quality score from a ShortReadQ instance using the quality

function.

b. Coerces the quality score to a numerical matrix representation using the
as function. This matrix has as many rows as there are reads, and as
many columns as there are cycles.

c. Calculate the average quality score of each cycle using colMeans.
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Figure 4: Quality-by-cycle (left) and distribution of read quality (right).

d. Develop a second function that calculates an overall read quality using
rowMeans.

Visualize the result using lattice.

Solution: Calculating quality by cycle requires translating character encod-
ings to their numeric representation.

> abc <- colMeans(as(quality(fq), "matrix"))

The following creates a data frame and displays the result.

> df <- data.frame(Mean=abc, Cycle=seq_along(abc))

> xyplot(Mean ~ Cycle, df, type=c("g", "b"), pch=20,

+ file="abc-quality")

Using the average quality of each read as a measure of ‘overall quality’, we have

> qual <- rowMeans(as(quality(fq), "matrix"))

> df <- data.frame(Quality=qual)

> histogram(~Quality, df, file="quality-by-read")

Interesting, mostly well-known, points from Figure 4 include:

a. Average quality declines with cycle.

b. The second mate of paired reads is consistently lower quality.

c. Average quality and error are related (larger deviation from the diagonal
at higher quality scores).

Exercise 9
Individual read sequences can be represented 1, 2, . . . times in a sample. The
overall extent to which reads are duplicated can indicate depth of coverage.
Singleton sequences (represented exactly once) and sequences with very high
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Figure 5: Cumulative frequency of reads occurring 1, 2, . . . times.

representation often reflect limitations of technology. Use the tables function,
and the element distribution of the return value, to create and interpret a
figure that plots the cumulative number of reads as a function of the number of
times a read occurs in a sample.

Solution:

> t <- tables(sread(fq), n=0)[["distribution"]]

> df <- data.frame(nOccurrences=t$nOccurrences,

+ CummulativeReads=cumsum(t$nOccurrences * t$nReads))

> ## display

> xyplot(CummulativeReads ~ log(nOccurrences), df,

+ type=c("b", "g"), pch=20, file="freqseq")

Interesting points (Figure 5):

a. The intercept (singleton reads) will decrease as sample size increases –
repeated observation of the same reads. The large value here implies
limited coverage.

b. That the second of the read pair is above the first might partly reflect
elevated error rates.

c. The most abundant reads in the second of the read pair reflects bias –
particular sequences (degenerate?) become super-abundant.
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Exercise 10
ShortRead can create a report summarizing several fastq files. A short script
(see the appendix) was used to summarize all fastq files; here we read in the
summary and generate the report.

a. Load the data R object qa_GSM461176_81, representing the qa summary
of GSM records 461176 through 461181. The path to the object is

> qaFile <- system.file("data", "qa_GSM461176_81.rda",

+ package="ExploringSequences")

b. Use the report function to generate a report, by default in a temporary
directory.

c. Browse the report using browseURL.

The ‘Id’ column in Table 1 is used to identify samples in the QA report; _1 or
_2 refers to the first and second mate in paired end runs. Reflect on the quality
of the reads in this experiment.

Solution:

> load(qaFile)

> rpt <- report(qa_GSM461176_81)

> browseURL(rpt)

If for some reason the report generation fails, a copy is available at

> rpt <- system.file("GSM461176_81_qa_report", "index.html",

+ package="ExploringSequences")

> browseURL(rpt)

Interesting points:

a. Substantial variation in number of reads per sample; low read counts in
samples 709, 719, 723.

b. GC content of 718-723 is unusual – all from S2_DRSC_CG8144_RNAi-1.

c. Samples are quite heterogeneous in distribution of read qualities.

d. Read distributions are not super-saturated – opportunity for greater se-
quencing? Sample 719 is unusual – disproportionate representation of very
common sequences.

e. All samples show initial primer bias; some samples, e.g., 708, 713, 717 2
show cycle-specific base trends. Sample 723 has unusual final nucleotides.

f. Samples differ in read length, maximum quality – likely different machines
and chemistry. 708-713, 718-723 are longer with low-quality tails.
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1.2 Alignments

The primary goal of this exercise is to become familiar with the Rsamtools
package for querying BAM alignment files

Exercise 11
The goal of this exercise is to open several BAM files as a BamFileList, and to
query one BAM file for the information about the reference sequences to which
reads have been aligned (using the seqinfo function) and the software tools used
to perform the alignment (using scanBamHeader and parsing the return value).

Solution: Create a list of BamFile objects, each pointing to a file and its
index. Using a BamFile avoids loading the index each time the file is used.

> fls <- list.files(bamFiles, "bam$", full=TRUE)

> stopifnot(length(fls) == 7)

> bam <- open(BamFileList(fls))

> names(bam) <- sub("_subset.bam", "", basename(fls))

Summary information is available in the header of each file, e.g., querying for
a summary of (reference) sequences and their lengths, or as tags available in
the text element of the header (see the samtools web site for details of header
content, including meaning of tags). For instance, our BAM files record the
command line used to generate them.

> seqinfo(bam[[1]])

> h <- scanBamHeader(bam[[1]])[["text"]]

> noquote(unname(sapply(h[["@PG"]], strwrap)))

Exercise 12
Common operations on BAM files are available as functions. For instance,
countBam counts the number of reads in each BAM file. A more interesting use
is to specify the param argument to this and other Rsamtools functions.

a. Create a GRanges object containing coordinates of four Drosophila genes;
see the solution for one such set.

b. Create a ScanBamParam object to specify the regions on which BAM file
operations are to be performed.

c. Use countBam to count reads in each of the regions.

d. Aligned reads have various flags that summarize the status of the read or
alignment. Use countFlags to summarize flags of reads in one of the genes.

Solution: countBam can be used to retrieve the number of reads aligned in
each BAM file. N.B., countBam is not meant to be used for counting reads in
complex regions as in an RNAseq analysis; see ?countGenomicOverlaps.

> cnt <- countBam(bam)

> cnt
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space start end width file records nucleotides

treated1 NA NA NA NA treated1_subset.bam 15937 709566

treated2 NA NA NA NA treated2_subset.bam 16413 607281

treated3 NA NA NA NA treated3_subset.bam 21364 790468

untreated1 NA NA NA NA untreated1_subset.bam 18929 1419675

untreated2 NA NA NA NA untreated2_subset.bam 28279 1272555

untreated3 NA NA NA NA untreated3_subset.bam 19164 709068

untreated4 NA NA NA NA untreated4_subset.bam 20245 749065

The ScanBamParam function creates an object that allows easy access to particular
portions of the file. For instance, the which argument can be used to select
which genomic regions are accessed. The which argument could be one of several
different objects, for instance a GRanges containing chromosomes and the regions
of interest.

> which <- GRanges(c("chr3L", "chrX", "chr3L"),

+ IRanges(c(1871574, 10675019, 14769596),

+ c(1876336, 10680978, 14779523)))

> param <- ScanBamParam(which=which)

> head(cnts <- countBam(bam, param=param))

space start end width file records

treated1.1 chr3L 1871574 1876336 4763 treated1_subset.bam 8464

treated1.2 chr3L 14769596 14779523 9928 treated1_subset.bam 2912

treated1.3 chrX 10675019 10680978 5960 treated1_subset.bam 1389

treated2.1 chr3L 1871574 1876336 4763 treated2_subset.bam 9280

treated2.2 chr3L 14769596 14779523 9928 treated2_subset.bam 2202

treated2.3 chrX 10675019 10680978 5960 treated2_subset.bam 1175

nucleotides

treated1.1 376766

treated1.2 129703

treated1.3 61846

treated2.1 343360

treated2.2 81474

treated2.3 43475

> ## create a label, e.g., chr3L:1871574-1876336

> cnts$rgn <- with(cnts, sprintf("%s:%d-%d", space, start, end))

> xyplot(file~records, group=rgn, cnts, type="b", pch=20,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="bam-regions")

The results are shown in Figure 6.
BAM files contain a flag field encoding information about the aligned reads,

e.g., the strand to which they aligned, whether they are mate paired, whether
the pairs are ‘proper’ in the eyes of the alignment tool producing the BAM
file. Here we summarize reads satisfying various flags (note that a read may
be tallied under more than one category, e.g., is a proper pair and is on the
negative strand).

> param1 <- ScanBamParam(which=which[3])

> countFlags(bam, param=param1)
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Figure 6: Number of reads aligning to regions of interest.

File Range isPaired isProperPair

treated1 treated1_subset.bam chr3L:14769596-14779523 0 0

treated2 treated2_subset.bam chr3L:14769596-14779523 2202 994

treated3 treated3_subset.bam chr3L:14769596-14779523 2924 1323

untreated1 untreated1_subset.bam chr3L:14769596-14779523 0 0

untreated2 untreated2_subset.bam chr3L:14769596-14779523 0 0

untreated3 untreated3_subset.bam chr3L:14769596-14779523 1946 948

untreated4 untreated4_subset.bam chr3L:14769596-14779523 1791 944

isUnmappedQuery hasUnmappedMate isMinusStrand isMateMinusStrand

treated1 0 0 1516 0

treated2 0 598 1110 802

treated3 0 282 1462 1324

untreated1 0 0 774 0

untreated2 0 0 1586 0

untreated3 0 141 963 901

untreated4 0 406 892 693

isFirstMateRead isSecondMateRead isPrimaryRead isValidVendorRead

treated1 0 0 0 0

treated2 1275 927 0 0

treated3 1500 1424 0 0

untreated1 0 0 0 0

untreated2 0 0 0 0

untreated3 978 968 0 0

untreated4 1013 778 0 0

isDuplicate

treated1 0
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treated2 0

treated3 0

untreated1 0

untreated2 0

untreated3 0

untreated4 0

> bam2 <- bam[-c(1, 4, 5)]

Exercise 13
The previous exercise introduced BAM files, some aspects of the ScanBamParam
class, and built-in functions for retrieving information from the file.

This and the next exercise illustrates how Rsamtools can be used more cre-
atively. As a first step, suppose one is interested in the ‘insert’ distance between
mapped reads of a mate pair. Construct a ScanBamParam object with:

a. The flag argument, determined by the scanBamFlags function, to select
the first read of each ‘proper’ mate pair.

b. The which argument and GRanges class created above, to restrict the query
to a particular region of the genome.

c. The what argument to return the pos (alignment position) and mpos (mate
read alignment position; arguments are described on ?scanBam help page).

Use this, the BamFileList object, and the scanBam function to query the BAM
files for the relevant information. The insert width is the absolute value of the
difference between the pos and mpos locations; calculate this for each sample,
and summarize as cumulative distribution.

Solution: Here is the ScanBamParam object:

> param2 <- ScanBamParam(

+ what=c("pos", "mpos"), which=which[3],

+ flag=scanBamFlag(isProperPair=TRUE, isFirstMateRead=TRUE))

Now query the BAM files, and take a look, using str, at the list-of-list-of-lists
returned:

> iwd0 <- lapply(bam2, scanBam, param=param2)

> str(iwd0)

List of 4

$ treated2 :List of 1

..$ chr3L:14769596-14779523:List of 2

.. ..$ pos : int [1:497] 14769636 14769636 14769649 14769649 14769649 14769650 14769650 14769650 14769653 14769670 ...

.. ..$ mpos: int [1:497] 14769751 14769768 14769788 14769794 14769758 14769779 14769786 14769797 14769788 14769798 ...

$ treated3 :List of 1

..$ chr3L:14769596-14779523:List of 2

.. ..$ pos : int [1:662] 14768575 14768576 14768577 14768577 14768578 14769599 14769599 14769636 14769642 14769649 ...

.. ..$ mpos: int [1:662] 14769114 14769129 14769137 14769116 14769112 14769744 14769746 14769778 14769781 14769779 ...

$ untreated3:List of 1
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..$ chr3L:14769596-14779523:List of 2

.. ..$ pos : int [1:474] 14769649 14769649 14769649 14769649 14769649 14769650 14769650 14769651 14769657 14769670 ...

.. ..$ mpos: int [1:474] 14769806 14769766 14769793 14769800 14769794 14769778 14769795 14769795 14769804 14769816 ...

$ untreated4:List of 1

..$ chr3L:14769596-14779523:List of 2

.. ..$ pos : int [1:470] 14769605 14769642 14769649 14769649 14769650 14769650 14769650 14769650 14769653 14769675 ...

.. ..$ mpos: int [1:470] 14769749 14769766 14769781 14769806 14769768 14769779 14769795 14769788 14769799 14769825 ...

Starting at the innermost list, the absolute value of the difference between each
element of the pos and mpos vectors represents the insert width (not quite –
what distance does this actually measure? What additional information would
be required to measure the insert distance? Is this information available from
the BAM file?). This information is itself represented in a list, so write a function
that extracts the first element of a list, and then calculates the distance between
mate pairs. Use lapply to calculate this distribution for each sample.

> fun <- function(elt)

+ with(elt[[1]], abs(pos - mpos))

> str(iwd <- lapply(iwd0, fun))

List of 4

$ treated2 : int [1:497] 115 132 139 145 109 129 136 147 135 128 ...

$ treated3 : int [1:662] 539 553 560 539 534 145 147 142 139 130 ...

$ untreated3: int [1:474] 157 117 144 151 145 128 145 144 147 146 ...

$ untreated4: int [1:470] 144 124 132 157 118 129 145 138 146 150 ...

To visualize the distribution, use (from the lattice package) the make.groups

function, invoked with do.call, to create a data frame with two columns, and
suitable for use in densityplot.

> df <- do.call(make.groups, iwd)

> densityplot(~data, group=which, df, plot.points=FALSE,

+ auto.key=list(lines=TRUE, points=FALSE, columns=2),

+ file="insert")

2 Microbiome / 454 sequences

Microbiome sequencing projects characterize the representation of organisms in
well-defined communities (e.g., flora of the human gut). Metagenomics aims
one step further, asking about the biological functions provided by the suite of
organisms found in a community. Both endeavors rely on assignment of longer
(200-400bp) sequence reads to a reference database of taxa.

A typical microbiome work flow involves collection of DNA samples from a
large number (10’s to 100’s) of individuals. Targeted PCR enriches samples for
one or a few phylogenetically informative markers, e.g., specific regions of 16s
RNA. A bar code is added to PCR-enriched DNA to allow sample multiplex-
ing. Sequencing uses a technology, e.g., 454, that produces reads that are long
enough to provide phylogenetic signal. Sequence processing requires reads to
be de-multiplexed. There are typically PCR artifacts (e.g., primer sequence) to
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Figure 7: Insert size of proper mate pairs at chr3L:1871574-1876336.

be cleaned. Pre-processed reads are aligned to curated collections of reference
genomes, with representation of taxa in the sample inferred from reads aligned
to reference genome.

These exercises focus on read manipulation prior to classification, with em-
phasis on

1. Data input.

2. Sub-sequence extraction and manipulation

3. Pattern matching.

The data are a subset of bacterial 16s sequences sampled from a human body
cavity. Down-stream analysis (beyond the scope of this tutorial) can use excel-
lent R packages for community and phylogenetic analysis (e.g., ape, vegan).

Exercise 14
454 technology is different from the Illumina platform. Reads are initially made
available as ‘flows’ in the sff file format. Unfortunately, there are no Biocon-
ductor packages that work directly with sff files. Instead, analysis begins with
fastq-like data, typically presented as pairs of fasta sequence (.seq) and quality
(.qual) files.

Input the sample data using the load(barFile) function. The data is rep-
resented as a ShortReadQ object, the same as seen earlier. Note that the read
widths are longer (up to 342 cycles) and variable. Quality scores also follow
a different pattern. Subset the reads to contain only those with width 250 or
more, then use the narrow function to look at the average quality of the trailing
250 nucleotides.
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Solution: Here we read in the data.

> load(barFile)

> bar

class: ShortReadQ

length: 262746 reads; width: 35..342 cycles

> summary(width(bar))

Min. 1st Qu. Median Mean 3rd Qu. Max.

35.0 248.0 251.0 248.2 254.0 342.0

Usually, 454 data is read in using the function read454.
Here we select reads with width 254 and look at the alphabet cycle at posi-

tions 100-110. Reads with this width

> bar254 <- bar[width(bar) == 254]

> alphabetByCycle(narrow(sread(bar254), 101, 110))[1:4,]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

A 0 1 1 1 2 5 1204 61901 269 63108

C 10 30 63084 264 40 63109 62132 239 23 5

G 238 13 12 1180 19 3 4 9 1183 12

T 63135 63339 286 61938 63322 266 43 1234 61907 258

Exercise 15
Microbiome studies generally benefit from many individuals and relatively fewer
sequences. Samples are therefore multiplexed by preceding the target sequence
with a bar code, in this case associated with the first 8 nucleotides of each read.

a. Use narrow function to isolate the bar codes.

b. Use table to determine the occurrence of each code.

c. Create a subset of reads corresponding to the most common bar code, and

d. Use narrow again, this time trimming the bar code and two adapter nu-
cleotides (nucleotides 1-10) from the sequences.

Solution: The following narrows the reads to positions 1-8 (containing the
bar code), and then tabulates and sorts, using standard R functions, the number
of times each bar code occurs. We then focus on the most abundant bar code.

> codes0 <- narrow(sread(bar), 1, 8)

> codes <- as.character(codes0)

> cnt <- sort(table(codes), decreasing=TRUE)[1:5]

> cnt

codes

AAGCGCTT AAGCTTGC AAGCGGTA AAGCTTCG AAGCTAGG

23387 20743 20602 18740 17567
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> aBar <- bar[codes==names(cnt)[[1]]]

> aBar

class: ShortReadQ

length: 23387 reads; width: 47..307 cycles

Now that aBar consists of reads from a single bar code, we can remove those
nucleotides using narrow to focus on the 11th through final nucleotides

> noBar <- narrow(aBar, 11, width(aBar))

> noBar

class: ShortReadQ

length: 23387 reads; width: 37..297 cycles

Exercise 16
A typical microbiome sample preparation involve targeted PCR amplification.
In this case the (redundant) PCR primer is present in the read. Further, the
primer is not always present fully intact. The primer sequence is

> pcrPrimer <- "GGACTACCVGGGTATCTAAT"

Trim the primer using the pattern-matching function trimLRPatterns. Sum-
marize the amount of trimming that has occurred by tabulating the difference
between the width of the sequences with the bar codes removed, and the same
sequences with the primer trimmed.

Solution:

> trimmed <-

+ trimLRPatterns(pcrPrimer, subject=noBar, Lfixed=FALSE)

> trimmed

class: ShortReadQ

length: 23387 reads; width: 26..291 cycles

> table(width(noBar) - width(trimmed))

0 1 11 12 17 18 19 20

843 3 1 1 1 3 26 22509
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A Appendix

The QA report data was collated with the following script. For each fastq file,
we create an identifier id from its file name, and read the file in with readFastq,
and calculate summary statistics using qa. doit will perform an lapply operation
on each file, but if the multicore package is available the operation will be in
parallel. The result qas is a list of qa summaries; these are bound together into
a single object using rbind.

> fun <- function(fl) {

+ id <- sub(".fastq$", "", basename(fl))

+ qa(readFastq(fl), id)

+ }

> fls <- list.files(pattern=".fastq$", full=TRUE)

> doit <-

+ if (suppressWarnings(require("multicore"))) {

+ mclapply

+ } else lapply

> qas <- doit(fls, fun)

> qa_GSM461176_81 <- do.call(rbind, qas)
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